Abstract

The presentation of a book or a digital document is an important factor when designing the interface of a digital catalogue or an online bookstore. One way to attract readers and customers is to show a thumbnail or a preview of the book cover, a feature that can be extended to include a selection of the book’s most appealing pages as well. If the number of documents handled by the system is large then the need to automate the page selection task arises. This paper details an efficient and easily implementable image-based technique to choose a given number of pages to appear as thumbnails on a document list interface. The algorithm is based on a combination of rudimentary layout analysis and colour saliency computation in order to extract pages with attractive features such as large, colourful images and text elements. An arbitrary amount of spread can be injected in the selection process through an iterative filter function. A preliminary user study of the algorithm shows that its results are satisfying and provides insight as to how the technique can be improved.

1. Introduction

A crucial aspect when marketing a book that authors and publishers pay considerable attention to is the book’s appearance and presentation. A catchy title, an attractive front cover and a gripping blurb greatly contribute to arousing the interest of potential readers. Equally important is how the book is displayed in the bookstore, whether it is prominently placed face out on a shelf near the entrance or whether it is hidden behind a row of other books on the shelf of a remote back room. In the digital world of the Long Tail [1], publications benefit from a wider exposure, as a greater number and variety of items can be accessed in a couple of mouse clicks and keystrokes. But while online bookstores and library systems have virtually unlimited presentation space, the issue of how individual documents should be displayed and what information should be shown at a given time on a user’s screen remains. Sites like Amazon and Google Book Search have acknowledged the importance of graphical previews for documents and so commonly include thumbnails of front covers and even inside pages in their summary views. To further increase a book’s visibility, Amazon provides a “Look Inside” (now “Search Inside”) feature, which allows customers to peek inside a book before purchasing it. To be fair to publishers and authors, only a portion of the book is available for preview, typically the front and back covers, the index, the table of contents and some excerpts, for example the first chapter. Looking inside, however, assumes customers’ interest has already been piqued as they have already singled out a book to take a closer look at. But in many cases the deciding factor is the first glance, when the book is first casually encountered at the bookstore (brick-and-mortar or virtual). As studies show, the cover plays an important role in getting the reader’s attention [2]. Even when leafing through the pages of a book, the features that typically catch the eye are text written in large font (such as titles), figures and images, with even more impact if the latter are in colour. It seems therefore important to consider those visual stimuli along with the information conveyed by text when advertising a book product. A natural way to do so beyond displaying its front cover is to also show a few of its most appealing pages. But first, one needs to translate “appealing” in computational terms, if one is to automate the selection process. In this paper, a simple and fast method to achieve this for the purpose of thumbnail display is presented. The algorithm improves on the technique presented in [16] by using a more robust colour saliency model.

The article is structured as follows: the next section explains the context of the present work. Section 3 details the proposed algorithm. Section 4 presents some early experimental results. Section 5 provides ideas for possible improvements that came up during evaluation. Finally, section 6 concludes the article.
2. Document list view

The graphical front-end where the sample pages of a book appear plays an important role in drawing potential readers’ attention to a particular document. It is the virtual shelf, whose layout and presentation will entice customers to pick up (click on) a book. An example of how such an interface might look like is shown in Figure 1.

Thumbnails of selected pages from each document are displayed along with the front cover (represented with a larger icon in the example) and relevant text information about the document. Such an interface can be used for any kind of application that requires user interaction with a document database or repository, may it be for an online bookstore, a digital library or simply local document access. Depending on the desired level of sophistication, the thumbnails can be made to react to user input, such as expanding and contracting on mouse-overs using the popular fish-eye effect. As an added benefit, the interface could also enable users to open documents directly to one of the listed pages by clicking on its associated icon.

![Figure 1. User interface with animated fish-eye view where the thumbnails of the selected pages are shown.](image)

Other paradigms where displaying a portion of a document makes sense are of course possible, for instance an enhanced icon view of folder contents for operating systems or a condensed virtual album containing selected pages through which the user can “flip” using a pointing device. Currently, a few mock-ups of possible UIs have been designed as proof of concept. Implementation, integration and evaluation of the interfaces are in progress.

Along with the work done on the presentation layer, effort has been expended on the automated process responsible for choosing the pages of the documents to display as thumbnails, which is the focus of this paper. The task can be seen as a special case of document summarization where the granularity is set at the page level and where attractiveness weighs more than representativeness.

3. Related Work

Automatic document summarization has received considerable attention in the past years. The vast majority of the work focuses on text summarization (see [12] and [13] for details about the techniques involved), but some authors such as Bloomberg et al. have considered the case of document images and proposed a method to select excerpts directly from imaged text without performing OCR [3]. Beyond text, Futrelle, recognizing the importance of figures in documents, has attempted to tackle the difficult problem of summarizing diagrams [4]. Berkner et al. developed a technique to automatically generate thumbnails of document images where a so-called “SmartNail” is constructed from cropped and scaled components of the original page image and extracted text elements are remodelled to be readable in the icon [5].

More closely related to the problem addressed in this paper, McCall et al define an interestingness factor computed for each page of a document to determine how distinctive the page is in the whole document and compared to its neighbours [6]. The calculated interestingness score is used to decide which pages should be displayed when scrolling rapidly through a document and where to stop if a user wishes to jump to a particular page. The score depends on several geometrical features such as number of columns, presence of pictures, headings, tables etc. which are obtained by segmentation. The work, however, does not reveal which segmentation technique is used to obtain the components, nor does it mention how the logical labelling is performed. Furthermore, colour or luminance is not considered in the approach so that document elements of the same type but with different colour patterns contribute equally to the page score. Finally, Google Book Search uses undisclosed automated methods to analyse a book and extract information for its “About this book” web page¹, including in some cases a selection of pages to be displayed as icons. Depending on the type of document and the density of text vs. images, the displayed thumbnails are limited to the table of contents and a portion of the index or they include several pages with images if the book is a photo album or a heavily illustrated report. The number of chosen pages is not fixed, as the interface does not limit the space for the page thumbnails. What is more, the fact that sometimes fairly nondescript pages appear in the results shows

¹ http://books.google.com/support/bin/answer.py?answer=53549
that attractiveness does not seem to be the main criterion for selection.

4. The Algorithm

The proposed algorithm detailed hereafter relies entirely on image data (i.e. pixels) so that original digital documents as well as digitized analogue documents (e.g. as acquired by a scanner or a digital camera) can be processed. The resulting program can conceivably be integrated into a larger system which includes other modules that extract relevant information to be displayed in the document list view such as titles, summaries, statistical data etc. The typical target context of the user interface is the browser window, that is, an environment where the space allotted to each document preview or summary is usually constrained by the UI manager. For that reason and also for design purposes it makes sense to fix the number of pages to be selected by the algorithm for display. The task is therefore to output the numbers or indices of the p most visually salient pages from a given n-page document (assuming, of course, p < n).

The algorithm can be broken down into the following steps:
1. Fast segmentation
2. Evaluation of Tone Saliency
3. Optional weighting for spread
4. Ranking and ordering of the pages

Because the first two steps involve computations that only consider pages individually, they lend themselves extremely well to parallel processing. At a finer level even, GPU-acceleration could be used to greatly speed up pixel-based operations.

4.1. Fast segmentation

Document image segmentation is the process of detecting the individual elements that comprise a document by analysing its structure. Segmentation is generally performed in order to subsequently extract machine-readable text from the text elements using OCR. A number of segmentation techniques have been detailed in the literature, a survey of which can be found here [14].

Segmentation requires a high accuracy if the purpose is to recover a digital document in an editable format that matches the original document. However it is much less important in our case, since we are only interested in detecting large elements in the page that are likely to be noticed by the eye after creating the thumbnail. A coarse segmentation performed on low-resolution versions of the page images is therefore sufficient for that purpose.

In the prototype implementation the Run-Length Smoothing Algorithm [7] with Shih et al.’s optimizations [8] was chosen for its simplicity and speed but it can easily be replaced by more modern and robust techniques if for example the quality of the source images is poor or the document layouts are complex so that a higher accuracy is required. In the latter cases, the choice of the binarisation and deskewing methods that need to be performed prior to segmentation is also critical.

RLSA runs through the binarised page horizontally and vertically and connects or “smears” black pixels if they are below pre-defined thresholds. After performing a logical AND on the results of the two smoothing operations, blocks of the constituent elements of the page can be roughly identified. Characters and words are merged into lines and the various parts of image elements are merged to form compact blocks.

To mark out the individual blocks obtained in the previous step, a connected component analysis is performed on the RLSA bitmaps. This is also a fast computation, as latest algorithms can determine connected components in linear time [11].

4.2. Tone Saliency

The visual significance or “appeal” score of each component is determined by calculating a value representative of its area and the vividness or intensity of its colours. The latter attribute is specified based on the consideration that stronger, saturated hues are more visible than lighter, muted ones. This is captured by defining a “tone saliency” value for each pixel in the original page image. The model is inspired by [15], where colour contrast saliency at pixel \(p_{ij} \) is defined as follows:

\[
C_{ij} = \sum_{q \in \Theta} d(p_{ij}, q)
\]

In the above formula the values \(q \) are the intensities of the pixels in the neighbourhood \(\Theta \) of \(p \) and \(d \) is an appropriate distance measure such as the Euclidean distance. In our particular context of efficiently assessing the saliency of document elements, the calculation of the contrast for each pixel is simply performed in relation to the surrounding background.

The contrast \(C_e \) of a single document element obtained by segmentation therefore becomes:

\[
C_e = \sum_{p \in E} c_b + d(p, q_b)
\]

where \(q_b \) is the intensity of the neighbouring background pixel and \(c_b \) a constant which represents an offset contrast value to add to each pixel belonging to a detected document element.

Pixel intensities are calculated using the CIELAB colour model, where distances in the model are said to reflect actual perceptual colour differences. In our implementation, however, the lightness component
\(L^*\) is compressed by a pre-defined value to reduce the influence of black-white contrast so that the importance of colour differences is increased. The latter modification is based on the consideration that people find brightly coloured objects more attractive than ones in shades of grey. An illustration of this concept is given in Figure 2.

Figure 2a shows the tone saliency map of a sample page (rendered in high resolution for illustration purpose) in which the intensely hued image on the left of the page yields higher contrast values than the image on the right.

Figure 2a (left): tone saliency map with whiter pixels representing the more coloured tones. **Figure 2b (right):** original page

After the tone saliency values have been computed for each connected component, the squared results are summed up to calculate the final score of the page. The same procedure is repeated for all pages in the document. The result is an array containing the sorted indices of the pages with the highest values. The indices are then used by the thumbnail generator to create the icons from the corresponding page images.

4.3. Introducing Weights

A side effect of calculating global scores is that a number of chosen pages may turn out to be close to each other in the original document. For example, if a document contains a section in which large diagrams that are similar or related to each other appear successively, chances are most or perhaps even all of them will end up in the final selection, to the detriment of other interesting, more different pages in the document. While the goal of the algorithm is not to extract the most representative pages of the document (which is why it differs from traditional summarization), a more distributed selection might be desirable to avoid the aforementioned problem.

To inject some level of spread between two consecutive chosen pages, a filter function can be introduced that artificially modulates the computed page-appeal scores depending on the index with respect to the previously selected page. The idea is to add some amount of periodicity in the selection process, by decreasing the score of pages following one that has just been selected and increasing the value of pages around the index at the pseudo-period. The simple Gaussian function below fulfils that purpose:

\[
\begin{align*}
\tilde{f}(x) &= \omega w e^{-A(x-t)^2} \\
&= \omega w e^{-A(x-i)^2}
\end{align*}
\]

where \(\tau\) is the pseudo-period (typically the total number of pages in the document divided by the number of pages to be selected), \(\omega\) the weight to be applied at \(\tau\) and \(A\), a constant which depends on \(\tau\), \(\omega\), and \(w_0\), the weight at the index of the currently selected page+1.

The function is applied iteratively and shifted across the page indices every time a page is chosen. Assuming \(i\) is the index of the last selected page, say the \(q^{th}\) of the \(p\) pages to be extracted, the coordinate system is shifted so that \(x = 0\) at \(i\) and values of \(f\) are computed for \(x = 0..(n-i)\). The obtained values are then multiplied with the scores calculated in the first step to determine a new array of modulated scores. The indices of the pages with the \(q\) highest scores are sorted and the page with the smallest index, that is, the one closest to the previously selected page, is chosen for the next iteration. The algorithm starts with page 1, which is always selected by default, and iterates through the array until the required number of pages have been selected.

The influence of the filter function on the initial page scores can be increased or decreased by modifying its parameters. For example, the periodicity will be more strongly enforced if \(\omega \gg \omega_0\).

5. Results

The page selection algorithm was tested on a number of documents containing mixed text and illustrations. Those included reports, presentations and PhD theses. A first series of experiments were carried out and the output used to adjust the parameters of the program until satisfactory results were obtained. For instance, with the 9/11 Commission Report as input, the following 10 pages were selected: [1, 66, 81, 165, 255, 296, 301, 305, 329, 330] and with the filter function applied: [1, 32, 66, 81, 148, 165, 255, 305, 329, 430]. The pages in the last array are more dispersed thanks to the weights applied to the scores. But this came at the price of choosing seemingly less “interesting” pages. As shown in Figure 3, a page of pure text and a sparse diagram have taken the place of pages with

denser illustrations and photos in the filtered set. This is due to the relatively low number of images and their uneven distribution in the original document.

To assess the relevance of the results, a short subjective evaluation was conducted in which the authors of some of the documents (in the present case PhD theses) used for the tests were asked to comment on the selections made by the algorithm. Specifically, they were given thumbnail renderings of the pages of their documents and asked to choose 9 (other than the first page which is always included) that they feel would best serve to advertise their work when displayed in a catalogue UI such as the one shown in Figure 2. The authors were also asked to explain their reasons for choosing those particular pages. In a second step, they were given the output of the algorithm including original and weighted results and for each page asked whether they agreed with its inclusion in the selection or not. Overall satisfaction and comments on the programme’s choices were also collected.

Generally, it turned out that authors used very different criteria to make their selections. Some preferred pages with coloured images and backgrounds, whereas others wanted their choice to be more representative and hence included some text pages. Some did not consider page spread important, some did. But despite the differences in the selection approaches, there was always some overlap between the authors’ first selections and the output of the program. More importantly, almost all participants deemed the choices made by the algorithm acceptable. On average, they approved 82% of the unweighted selection. The filter function was shown to have fulfilled its role as distributing and diversifying agent, albeit sometimes at the cost of selecting less appealing pages. The fact that satisfaction was slightly higher (84%) is explained by some authors who wanted more variety in the final selection and hence were happier to have one or more thumbnails of less “interesting” pages included among the ones with more pronounced features.

The dimensions of the target thumbnails played an important role in some cases. The longer dimension of the icons was first set at 120 pixels, which is slightly larger than that of the thumbnails of Amazon’s book covers. Depending on the size, important chapters and section titles may or may not be readable and thus influence the participants’ decisions. This was confirmed after asking the volunteers to pick 9 pages from the same documents, but this time using 200x200 icons (i.e. slightly larger than the size used in Google Book Search). At this size, chapter titles became readable and consequently some authors tended to include them in their selections. As a result, the average page-by-page satisfaction percentage fell below 70%. The algorithm, of course, does not perform any legibility analysis and so outputs the same results regardless of the resolution of the target thumbnail.

6. Possible Improvements

Through testing and discussions with the participants in the preliminary evaluation experiments, many ideas to improve the selection process (but at the cost of increased complexity) emerged. One of them, already mentioned above, is to consider text readability as a possible factor that should influence the score. If the table of contents or a list of the main chapters is not included in the document summary view, a detected chapter title or heading in the document image might be of value for the user and so should perhaps be made to influence the page score.

Another aspect which increases a page’s visibility and is therefore probably worth consideration is contrast and colour distribution. The simple tone saliency feature defined above works well to cull dense, coloured elements over lighter ones but it does not make any distinction between different hues (saturated yellow for example is less visible on a white background than saturated red or blue), neither does it really reflect the attractiveness of an element as a whole. More generally, one can expect that identifying and factoring in low-level image features having an influence on humans’ visual attention will bring more flexibility and make the system more robust to a wider variety of documents. Attention-driven approaches have already been successfully used for generic image retrieval (e.g. [9] and [10]) and although the techniques might not all be directly
applicable to document images, it is likely that they can contribute at least in part.

As for the filter function, the weighted scores ensure there is a certain amount of distribution in the choice of pages, but they do not guarantee that the selected pages are all different, since it is possible for pages with similar visual patterns to be located at different places in the document. To eliminate or alleviate this problem, another filter function could be added that would compare the visual structure of pages to that of those which have already been selected. A page’s score would be decreased accordingly if it is determined to be too similar to a previously chosen one, thereby guaranteeing more diversity without compromising interestingness.

7. Conclusion

The page-selection algorithm was designed as a quick and simple way to output a specified number of suitable candidates for page thumbnails that could be used in a document list user interface. The initial hypothesis was that this could be achieved without resorting to comprehensive layout analysis and elaborate user-attention models, which were seen as too complex and unnecessarily costly for the intended purpose. To a great extent this assumption has been substantiated, as documents with a combination of text and images yielded good results at relatively low computational costs. Besides, the penalty for selecting less outstanding pages than what authors might have chosen is minor, since the impact of showing one page icon over another is not all that consequential. Focusing on adding and refining the detection of features that affect a page’s visual appeal such as visible titles and salient objects seems to offer a good compromise between increased robustness and complexity of the image processing techniques involved.

Acknowledgements

The author would like to thank Gabriel Brostow, Friedrich Fraundorfer and Hongwen Kang for their help on the tone saliency function.

References

